缩写和收缩通常在不同领域的文本中发现。例如,医生的笔记包含许多可以根据他们的选择个性化的收缩。现有的拼写校正模型不适合处理扩展,因为单词中的字符减少了很多。在这项工作中,我们提出了一个基于BERT的模型ABB-Bert,该模型涉及包含缩写和收缩的模棱两可的语言。ABB-BERT可以从数千种选项中排名,并设计用于规模。它经过Wikipedia文本的培训,该算法允许它通过很少的计算进行微调,以获得域或人的更好性能。我们将公开发布培训数据集,以缩写从Wikipedia衍生出的缩写和收缩。
translated by 谷歌翻译
在本文中,我们通过推断在歧管上的迭代来提出一种简单的加速度方案,用于利曼梯度方法。我们显示何时从Riemannian梯度下降法生成迭代元素,加速方案是渐近地达到最佳收敛速率,并且比最近提出的Riemannian Nesterov加速梯度方法在计算上更有利。我们的实验验证了新型加速策略的实际好处。
translated by 谷歌翻译
我们研究了量子多体系统的哈密顿量的参数的问题,鉴于对系统的访问有限。在这项工作中,我们基于最近通过衍生估计进行哈密顿学习的方法。我们提出了一项协议,以改善先前作品的缩放依赖性,尤其是在与哈密顿式结构有关的参数方面(例如,其locality $ k $)。此外,通过在我们的协议的性能上得出精确的界限,我们能够在我们的学习协议中为高参数的理论上最佳设置提供精确的数值处方,例如最大进化时间(当统一动力学学习时)或最低温度(当与吉布斯国家学习时)。多亏了这些改进,我们的协议对于大型问题很实际:我们通过对80克系统的协议进行数值模拟来证明这一点。
translated by 谷歌翻译
基于密度的分布(OOD)检测最近显示了检测OOD图像的任务不可靠。基于各种密度比的方法实现了良好的经验性能,但是方法通常缺乏原则性的概率建模解释。在这项工作中,我们建议在建立基于能量的模型并采用不同基础分布的新框架下统一基于密度比的方法。在我们的框架下,密度比可以看作是隐式语义分布的非均衡密度。此外,我们建议通过类比率估计直接估计数据样本的密度比。与最近的工作相比,我们报告了有关OOD图像问题的竞争结果,这些工作需要对任务进行深层生成模型的培训。我们的方法使一个简单而有效的途径可以解决OOD检测问题。
translated by 谷歌翻译
成像,散射和光谱是理解和发现新功能材料的基础。自动化和实验技术的当代创新导致这些测量更快,分辨率更高,从而产生了大量的分析数据。这些创新在用户设施和同步射击光源时特别明显。机器学习(ML)方法经常开发用于实时地处理和解释大型数据集。然而,仍然存在概念障碍,进入设施一般用户社区,通常缺乏ML的专业知识,以及部署ML模型的技术障碍。在此,我们展示了各种原型ML模型,用于在国家同步光源II(NSLS-II)的多个波束线上在飞行分析。我们谨慎地描述这些示例,专注于将模型集成到现有的实验工作流程中,使得读者可以容易地将它们自己的ML技术与具有普通基础设施的NSLS-II或设施的实验中的实验。此处介绍的框架展示了几乎没有努力,多样化的ML型号通过集成到实验编程和数据管理的现有Blueske套件中与反馈回路一起运行。
translated by 谷歌翻译
我们调查了一定类别的功能不等式,称为弱Poincar的不等式,以使Markov链的收敛性与均衡相结合。我们表明,这使得SubGoom测量收敛界的直接和透明的推导出用于独立的Metropolis - Hastings采样器和用于棘手似然性的伪边缘方法,后者在许多实际设置中是子表芯。这些结果依赖于马尔可夫链之间的新量化比较定理。相关证据比依赖于漂移/较小化条件的证据更简单,并且所开发的工具允许我们恢复并进一步延长特定情况的已知结果。我们能够为伪边缘算法的实际使用提供新的见解,分析平均近似贝叶斯计算(ABC)的效果以及独立平均值的产品,以及研究与之相关的逻辑重量的情况粒子边缘大都市 - 黑斯廷斯(PMMH)。
translated by 谷歌翻译
分发(OOD)检测和无损压缩构成了两个问题,可以通过对第一个数据集的概率模型进行训练来解决,其中在第二数据集上的后续似然评估,其中数据分布不同。通过在可能性方面定义概率模型的概括,我们表明,在图像模型的情况下,泛展能力通过本地特征主导。这激励了我们对本地自回归模型的提议,该模型专门为局部图像特征而达到改善的性能。我们将拟议的模型应用于检测任务,并在未引入其他数据的情况下实现最先进的无监督的检测性能。此外,我们使用我们的模型来构建新的无损图像压缩机:Nelloc(神经本地无损压缩机)和报告最先进的压缩率和模型大小。
translated by 谷歌翻译
在室内定位中,信号波动是高度的依赖性。然而,信号不确定性是要指纹的无线电信号的一个关键且通常被忽略的尺寸。本文评论了概率定位的常用高斯过程(GP),并指出使用GP模拟信号指纹不确定性的缺陷。本文还提出了深度高斯进程(DGP)作为解决该问题的更具信息替代方案。通过模拟和现实收集的数据集评估DGP如何更好地测量信号指纹识别中的不确定性。
translated by 谷歌翻译
我们考虑优化从高斯过程(GP)采样的矢量值的目标函数$ \ boldsymbol {f} $ sampled的问题,其索引集是良好的,紧凑的度量空间$({\ cal x},d)$设计。我们假设$ \ boldsymbol {f} $之前未知,并且在Design $ x $的$ \ \ boldsymbol {f} $ x $导致$ \ boldsymbol {f}(x)$。由于当$ {\ cal x} $很大的基数时,识别通过详尽搜索的帕累托最优设计是不可行的,因此我们提出了一种称为Adaptive $ \ Boldsymbol {\ epsilon} $ - PAL的算法,从而利用GP的平滑度-Ampled函数和$({\ cal x},d)$的结构快速学习。从本质上讲,Adaptive $ \ Boldsymbol {\ epsilon} $ - PAL采用基于树的自适应离散化技术,以识别$ \ Boldsymbol {\ epsilon} $ - 尽可能少的评估中的准确帕累托一组设计。我们在$ \ boldsymbol {\ epsilon} $ - 准确的Pareto Set识别上提供信息类型和度量尺寸类型界限。我们还在实验表明我们的算法在多个基准数据集上优于其他Pareto Set识别方法。
translated by 谷歌翻译